JW3311 Series ### 8/9/10 Cell Battery Protectors Parameters Subject to Change Without Notice #### **DESCRIPTION** JW[®]3311 is a multi-cell battery protection IC that includes high-accuracy voltage detection circuits and delay circuits. It is possible for users to monitor the status of 8~10 series cell lithium-ion rechargeable battery pack. JW3311 provides multiple protect functions including over-charge, over-discharge, over-current, over-temperature and open wire detection. More JW3311s can operate in cascade to protect long string battery. Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc. #### **FEATURES** - Wide range of operation voltage 6V to 60V - Monitor 8~10 series cell battery and support cascaded operation - High-accuracy voltage detection for each cell - Over-charge detection voltage V_{oc}: 3.6~4.4V (50mV step) ±20mV - Over-charge release hysteresis V_{OCRH}: 0.1~0.4V (100mV step) - Over discharge detection voltage V_{OD}: 2.3~3.0V (100mV step) ±80mV - Over-discharge release hysteresis V_{ODRH}: 0.2~0.5V (100mV step) - Charge over-current detection four options 10 mV, 20 mV, 50 mV, Disable - Discharge over-current detection in 3-step - 1st detection voltage V_{DOI1}: 0.05~0.2V (50mV step) ±10mV - 2nd detection voltage V_{DOI2}: 2V_{DOI1} (100mV step) ±20mV - Short circuit detection voltage V_{SHT}: 0.4~0.7V (100mV step) ±80mV - High-accuracy battery temperature detection - Charging over-temperature protection threshold V_{COT}: 0.85V (50°C) ±30mV (±4°C) - Charging under-temperature protection threshold V_{CUT}: 0.23V (-10°C) ±30mV (±4°C) - Discharging over-temperature protection threshold V_{DOT}: 0.98V (70°C) ±25mV (±4°C) - Three-step discharge over-current protection - For 1st, programmable from 0.1~10s - For 2nd, two options available (by part number) - > (0.1~10s)×1%, - > (0.1~10s)×10% - For 3rd, short circuit 300µs. - Discharge disable mode selectable - Open wire detection - Charging Permission (CP) condition check - Wide range of operation temperature -40°C to +85°C - Low current consumption Full power mode $20\mu A$ Max. (T=25°C) Sleep mode $13\mu A$ Max. (T=25°C) Shutdown mode 350nA Max. (T=25°C) Package: 24-Pin TSSOP #### **APPLICATIONS** - Rechargeable lithium-ion battery pack - Electric bicycles - Motorcycles - Backup battery systems - Hybrid electric vehicles # **TYPICAL APPLICATION** Single-stage operation (10cells) Cascaded operation (20cells) **Remark:** when the cell11~cell20 had over-discharge fault, the load lock function is disabled. If need the load lock function, please refer to "User Manual" ## **Selection Guides** #### **Production name structure** - 1: Product Series List, relates to different detection threshold voltage - 2. Battery No. Selection: 8→8Cells, 9→9Cells, 0→10Cells #### **Products Series List** | Type/Item | Over -charge detection voltage [V _{OC}] | Over -charge release voltage [V _{OCL}] | Over -discharge detection voltage [V _{OD}] | Over -discharge release voltage [V _{ODH}] | Charge over -current detection voltage [Vcol] | Discharge
over-current
1 detection
voltage
[V _{DOI1}] | Discharge
over-current
2 detection
voltage
[V _{DOI2}] | Short
circuit
detection
voltage
[V _{SHT}] | The Ratio
of t _{doi2} and
t _{doi1}
[t _{doi2} /t _{doi1}] | |------------|---|--|--|---|---|---|---|---|---| | JW3311-0NF | 4.25V | 4.15V | 2.8V | 3.0V | Disable | 100mV | 200mV | 400mV | 1% | | JW3311-8NF | 4.25V | 4.15V | 2.8V | 3.0V | Disable | 100mV | 200mV | 400mV | 1% | | JW3311-0HF | 4.25V | 4.15V | 2.8V | 3.0V | 30mV | 100mV | 200mV | 400mV | 1% | | JW3311-0AR | 4.2V | 4.1V | 2.8V | 3.0V | Disable | 100mV | 200mV | 400mV | 1% | | JW3311-8AR | 4.2V | 4.1V | 2.8V | 3.0V | Disable | 100mV | 200mV | 400mV | 1% | | JW3311-0HW | 4.22V | 4.12V | 2.7V | 3.0V | 20mV | 100mV | 200mV | 500mV | 1% | | JW3311-0AY | 4.22V | 4.12V | 2.7V | 3.0V | Disable | 100mV | 200mV | 400mV | 1% | | JW3311-0AD | 4.25V | 4.15V | 2.7V | 3.0V | Disable | 100mV | 200mV | 500mV | 1% | | JW3311-0AP | 3.8V | 3.5V | 2.3V | 2.6V | Disable | 100mV | 200mV | 400mV | 1% | **Remark:** Please contact our sales office for products with detection voltage values other than those specified above. # **ORDER INFORMATION** | DEVICE ¹⁾ | PACKAGE | TOP MARKING ²⁾ | |---------------------------|---------|---------------------------| | JW3311-0NFTSSOPC#TRPBF | TSSOP24 | JW3311-0NF | | JW3511-UNF135OPC#TRPBF | 1330724 | YW□□□□ | | JW3311-8NFTSSOPC#TRPBF | TSSOP24 | JW3311-8NF | | JW3511-0NF135OPC#1RPBF | 1330724 | YW | | JW3311-0HFTSSOPC#TRPBF | TSSOP24 | JW3311-0HF | | JW3511-UNF135UPC#TRPBF | 1330724 | YW | | JW3311-0ARTSSOPC#TRPBF | TSSOP24 | JW3311-0AR | | JW3311-UARTSSOPC#TRPBF | 1550P24 | YW | | JW3311-8ARTSSOPC#TRPBF | TSSOP24 | JW3311-8AR | | JW3311-8AR135OPC#1RPBF | 1550P24 | YW□□□□□ | | JW3311-0HWTSSOPC#TRPBF | TSSOP24 | JW3311-0HW | | JW3311-0HW1330PC#1KPBF | 1550P24 | YW | | JW3311-0AYTSSOPC#TRPBF | TSSOP24 | JW3311-0AY | | JW3311-UAY133UPC#1RPBF | 1550P24 | YW | | JW3311-0ADTSSOPC#TRPBF | TSSOP24 | JW3311-0AD | | JAN 3211-OAD 122OLC#1KLRL | 1550724 | YW□□□□□ | | IM/2211 OARTSCORGETERRE | TCCOD24 | JW3311-0AP | | JW3311-0APTSSOPC#TRPBF | TSSOP24 | YW□□□□ | #### Note: **JW3311 Series** # **PIN CONFIGURATION** # **ABSOLUTE MAXIMUM RATING**¹⁾ | VDD,DOCT | 0.3V~+60V | |------------------------------------|-------------------| | CTLD,CTLC | VDD-5V~VDD+0.7V | | VC0, VC1 | 0.3V~+24V | | VC(n), n=2, 3, 4, 5 | 0.3V~+40V | | VC(n), n=6, 7, 8, 9, A | 0.3V~+60V | | VM | 0.3V~+24V | | CO,DO | 0.3V~+24V | | VC(n)-VC(n-1) | 0.3V~20V | | VCA | | | VDO,TS1,TS2,DOIT,VINI | 0.3V~+6.5V | | Junction Temperature ²⁾ | 150°C | | Lead Temperature | 260°C | | Storage Temperature | -65 °C to +150 °C | # RECOMMENDED OPERATING CONDITIONS | 3(N)-B(N-1) | 0V to 5V | |---------------------------------------|------------| | unction Temperature (T ₁) | C to 125°C | # THERMAL PERFORMANCE³⁾ θ_{JA} θ_{JC} TSSOP2442....9°C/W #### Note: - 1) Exceeding these ratings may damage the device. - 2) Continuous operation over the specified absolute maximum operating junction temperature may damage the device. - 3) Measured on JESD51-7, 4-layer PCB. # **ELECTRICAL CHARACTERISTICS** | TA = 25°C, unless otherwise stated. | | | | | | | | |---|---------------------------------------|----------------------------------|----------------------------------|------------------------|-------------------|------------------------|-------| | | Item | Symbol | Condition | Min. | Тур. | Max. | Units | | Power suppl | y | | | | | | | | Operation vol | tage between VDD pin | V_{DSOP} | | 6 | | 60 | V | | Power-on rese | t threshold | V _{PON} | | | 5.4 | 6 | V | | Shutdown thre | shold | V _{PDOWN} | | 4.7 | 5 | 5.3 | V | | Current consu | mption during full power | I _{FP} | | | | 20 | μА | | Current consu | mption during sleep | I _{SLEEP} | | | | 13 | μА | | Current consu | mption during shutdown | I _{SD} | | | | 350 | nA | | Detection peri | od time for over-voltage | t _{DETV} 4) | | | 0.4 | | s | | Detection per | Detection period time for discharge | | | | 1.6 | | s | | Detection period time for charge over-temperature/under-temperature | | t _{CHGDETT} 4) | | | 3.2 | | S | | Voltage/Curi | rent/Temperature Protec | ctions | | | | | | | | Protection threshold | V _{OC} | | V _{OC} -0.020 | V _{oc} | V _{OC} +0.020 | V | | Over-charge | Release threshold | V _{OCL} | | V _{OCL} -0.06 | V _{OCL} | V _{OCL} +0.06 | V | | | Protection delay time | $t_{OC}^{4)}$ | | 0.65 | 1 | 1.95 | s | | Over | Protection threshold | V_{OD} | | V _{OD} -0.08 | V _{OD} | V _{OD} +0.08 | V | | Over-
discharge | Release threshold | V_{ODH} | | V _{ODH} -0.12 | V _{ODH} | V _{ODH} +0.12 | V | | discharge | Protection delay time | t _{OD} ⁴⁾ | | 0.65 | 1 | 1.95 | S | | Charge aver | Protection throshold | V | 10mV | V _{COI} -5 | V _{COI} | V _{COI} +5 | mV | | Charge over-
current | Protection threshold | V _{COI} | 20 mV / 50mV | V _{COI} -10 | V _{COI} | V _{COI} +10 | mV | | Current | Protection delay time | t _{COI} ⁴⁾ | | 270 | 540 | 810 | ms | | | 1 st protection voltage | V _{DOI1} | | V _{DOI1} -10 | V _{DOI1} | V _{DOI1} +10 | mV | | Discharge | 1 st protection delay time | t _{DOI1} 4) | C _{DOIT} =4.7nF
±10% | 390 | 780 | 1170 | ms | | over-current | | t _{DOI1S} ⁴⁾ | DOIT pin short
to GND | 5 | 10 | 15 | S | | | | t _{DOI10} ⁴⁾ | DOIT pin open | 0.05 | 0.1 | 0.15 | S | | | 2 nd protection voltage | V _{DOI2} | | V _{DOI2} -20 | V_{DOI2} | V _{DOI2} +20 | mV | | | 2 st protection delay time | t _{DOI2} 4) | C_{DOIT} =4.7nF
\pm 10%
t_{DOI2} =
t_{DOI1} ×1% | 3.9 | 7.8 | 11.7 | ms | |-----------------------------------|--|---------------------------------|--|----------------------|-----------|----------------------|-------------------| | | Short protection voltage | V _{SHT} | | V _{SHT} -80 | V_{SHT} | V _{SHT} +80 | mV | | | Short protection delay time | t _{SHT} ⁴⁾ | | 150 | 300 | 450 | μS | | | Over-temperature protection threshold | V _{СОТ} | 50°C±4°C
R _{NTC} =103AT | 67.7% | 70.6
% | 73.3% | V _{VDOH} | | | Over-temperature release hysteresis | V _{COTRH} | 5°C | | 50 | | mV | | temperature | Under-temperature protection threshold | V _{CUT} | -10°C±4°C
R _{NTC} =103AT | 16.3% | 19.1
% | 22.2% | V _{VDOH} | | | Under-temperature release hysteresis | V _{CUTRH} | 5°C | | 40 | | mV | | | Temperature protection delay time | t _{COT} ⁴⁾ | | 2.4 | 3.5 | 6.7 | S | | | Over-temperature protection threshold | V_{DOT} | 70°C±4°C
R _{NTC} =103AT | 80% | 81.8
% | 83.4% | V _{VDOH} | | temperature | Over-temperature release hysteresis | V_{DOTRH} | 5°C | | 30 | | mV | | | Temperature protection delay time | t _{DOT} ⁴⁾ | | 2.4 | 3.5 | 8.8 | S | | | Discharge detection threshold | V_{TH_DSG} | | 1 | 3 | 5 | mV | | | Charge detection threshold | V_{TH_CG} | | -5 | -3 | -1 | mV | | Input Voltage | | | | | | | | | DOCT pin switch | hing threshold | V_{DOCT} | | 3.5 | 3.9 | 4.3 | V | | DOCT detection delay time | | t _{DOCT} ⁴⁾ | | | 225 | | ms | | CTLD/CTLC sink current | | I _{CTL} | | 0.8 | 1 | 1.5 | μΑ | | CTLD/CTLC sink current Hysteresis | | I _{CTLH} | | | 0.5 | | μА | | CTLD/CTLC input voltage L | | V_{CTLL} | | | | V _{DD} -1.5 | V | | CTLD/CTLC inp | ut voltage H | V_{CTLH} | | V _{DD} -0.5 | | | V | | Output Voltag | ne e | | | | | | | | VDO pin output | voltage L | V_{VDOL} | | | 0 | | V | | VDO pin output | voltage H | V_{VDOH} | | 1.15 | 1.2 | 1.25 | V | | | | T | I | I | <u> </u> | ı | | |---|------------------|-------------|----------|-----|----------|-----|--| | VDO pin output current limit | V_{VDOI} | | 0.7 | 1 | 1.3 | mA | | | CO output voltage L | V_{COL} | | 0 | | 0.5 | V | | | CO output voltage H | V _{COH} | Normal mode | | 12 | | V | | | CC output voitage 11 | V COH | Sleep mode | | 10 | | V | | | DO output voltage L | V_{DOL} | | 0 | | 0.5 | V | | | DO output voltage H | V_{DOH} | | | 12 | | V | | | Input Current | | | | | | | | | VCA~VC0 pin current | I _{VC} | | -1.0 | 0 | 1.0 | μΑ | | | Output Current | | | | | | | | | CO pin maximum source current | I _{COH} | | | 8 | | mA | | | CO pin maximum sink current | I _{COL} | | | 85 | | mA | | | DO pin maximum source current | I _{DOH} | | | 8 | | mA | | | DO pin maximum sink current | I _{DOL} | | | 85 | | mA | | | Load Detection | | | | | | | | | Resistance between VM pin and GND | D | | | 405 | | 1.0 | | | pin | R_{VM} | | | 125 | | kΩ | | | Load detection threshold | V_{VMD} | | 0.8 | 1 | 1.2 | V | | | Charger Detection | | | | | | | | | Charger detection pull up current | I _{PU} | | 0.8 | 1 | 1.2 | μА | | | Charger detection threshold | V_{VMC} | | 2.5 | 3 | 3.5 | V | | | Charging Permission Protection | | | | | | | | | Single cell charging permission voltage | V _{CP} | | 0.7 | 0.9 | 1.1 | V | | | | | <u> </u> | <u> </u> | | | L | | #### Note: 4) Guaranteed by design. # **PIN DESCRIPTION** | PIN No. | PIN Name | PIN Description | | |---------|----------|--|--| | 1 | VDD | Input pin for positive power supply, | | | 2 | VCA | Connection pin for battery 10's positive voltage | | | 3 | VC9 | Connection pin for battery 9's positive voltage | | | 4 | VC8 | Connection pin for battery 8's positive voltage | | | 5 | VC7 | Connection pin for battery 7's positive voltage | | | 6 | VC6 | Connection pin for battery 6's positive voltage | | | 7 | VC5 | Connection pin for battery 5's positive voltage | | | 8 | VC4 | Connection pin for battery 4's positive voltage | | | 9 | VC3 | Connection pin for battery 3's positive voltage | | | 10 | VC2 | Connection pin for battery 2's positive voltage | | | 11 | VC1 | Connection pin for battery 1's positive voltage | | | 12 | VC0 | Connection pin for battery 1's negative voltage | | | 13 | GND | Input pin for negative power supply | | | 14 | VINI | Charge and discharge over-current detection terminal | | | 15 | VM | Load detection pin | | | 16 | TS2 | Thermal sense input 2 | | | 17 | TS1 | Thermal sense input 1 | | | 18 | DOIT | Discharge over-current delay time setting pin | | | 19 | DOCT | Pin for independently controlling discharge MOSFET | | | 20 | DO | Gate connection pin for discharge control MOSFET | | | 21 | СО | Gate connection pin for charge control MOSFET | | | 22 | VD0 | 1.2V LDO output. Must be bypass to GND with a 0.47µF ceramic | | | 22 | VDO | capacitor for stable operation. | | | 23 | CTLC | CO controller for cascade application | | | 24 | CTLD | DO controller for cascade application | | # **BLOCK DIAGRAM** #### **OPERATION** #### **Normal Status** In the JW3311, both CO and DO pins output high level voltage when all battery voltages are between V_{OD} and V_{OC} , the battery temperature is between V_{COT} and V_{CUT} , and the VINI pin voltage is less than V_{DOI1} . This is the normal status. ## **Over-charge Status** JW3311 detects cell voltage once per t_{DETV} . When any battery voltage increases to V_{OC} or more for longer than t_{OC} , the CO pin outputs low level voltage. Since the CO pin pulled down to the PACK- voltage by an external resistor, the charge MOSFET is turned off to stop charging. This is the over-charge status. The over-charge status is released if either of the conditions mentioned below is satisfied: - (1) All battery voltage drops to V_{OCL} or less. - (2) The VINI pin voltage is higher than V_{TH_DSG} and all battery voltage drops to V_{OC} . #### Over-discharge Status JW3311 detects cell voltage once per t_{DETV} . When any voltage of batteries decreases to V_{OD} or lower for longer than t_{OD} , the DO pin outputs low level voltage. The discharge MOSFET is turned off and discharge stops. This is the over-discharge status. After entering to over-discharge status, the CO pin will output 10V to reduce power dissipation. The VM pin is pulled down to the GND level via R_{VMS} internally. The over-discharge status is released if either of conditions mentioned below is satisfied: (1) The VM pin voltage is lower than V_{VMD} , and all battery voltages increase to V_{ODH} or more. (2) The VM pin voltage is lower than V_{VMD} , and the VINI pin voltage is lower than V_{TH_CG} during charging. #### **Charge Over-current Status** In the JW3311, if the VINI pin voltage increases to V_{COI} or more for longer than t_{COI} , the CO and DO pins output low level voltage. The charge and discharge MOSFETs are turned off. This is the charge over-current status. The VM pin is pulled up to the 5V level via I_{PU} internally. The charge over-current status is released if the following condition is satisfied: The VM pin voltage is higher than V_{VMC} ## **Discharge Over-current Status** In the JW3311, if the VINI pin voltage increases to V_{DOI} or more (discharge over-current threshold voltage) for longer than t_{DOI} (discharge over-current detection delay time), the DO pin outputs low level voltage. The discharge MOSFET is turned off and discharge stops. This is the discharge over-current status. The VM pin is pulled down to the GND level via R_{VMS} internally. JW3311 has three thresholds for discharge over-current detection (V_{DOI1} , V_{DOI2} , V_{SHT}). The discharge over-current status is released if the following condition is satisfied: The VM pin voltage is lower than V_{VMD} . ### **Delay Time Setting** In the discharge over-current detection, users are able to set the delay time through an external capacitor. When the VINI pin voltage reaches V_{DOI1} or more, JW3311 starts charging C_{DOIT} (the DOIT pin capacitor) via I_{DOIT} (the DOIT pin output current). After a certain period, the DO pin outputs low level voltage. This period is t_{DOI1} , which can be calculated using the following equation. $$t_{DOI1}[s] = R_{DOI1}[\Omega] \times C_{DOIT}[nF]$$ =1.67×10⁸[\Omega] \times C_{DOIT}[nF] In case C_{DOIT} =4.7nF, t_{DOI1} is calculated as below. $$t_{DOI1}[s] = 1.67 \times 10^{8} [\Omega] \times 4.7 [nF] = 0.785 [s] (typ.)$$ The 2^{nd} discharge over-current detection delay time (t_{DOI2}) is calculated as below. $$t_{DOI2} = t_{DOI1} \times 1\%$$ or $t_{DOI2} = t_{DOI1} \times 10\%$ The ratio of t_{DOI2} and t_{DOI1} is 1% or 10% that could be selectable through part number. The over-charge detection delay time, over -discharge detection delay time and load short circuit detection delay time are fixed internally. #### **Fault Detection on DOIT** To set the discharge over-current detection delay time, a capacitor is connected between DOIT pin and GND pin. If the discharge over-current is detected and the DOIT pin is shorted to ground, t_{DOI1} is automatically changed to t_{DOI1S} . In the same manner, if the discharge over-current is detected and the DOIT pin is floating, t_{DOI1} is automatically changed to t_{DOI10} . ### **Battery Temperature Protection** JW3311 provides two temperature sensing pins (TS1&TS2) for detecting the temperature of battery cells. Two NTC (recommend 103AT, β =3435) resistors are placed nearby battery cells separately. JW3311 detects over-temperature or under-temperature once per t_{DETT} (temperature detection period time). During temperature detection, only when $VINI>V_{TH_DSG}$, the JW3311 considers discharge state. Others, the JW3311 considers charge state. In charge state, once the battery temperature is beyond V_{COT} or below V_{CUT} , JW3311 shuts down the charge MOSFET. In charge stage, once the battery temperature is beyond V_{DOT} , JW3311 shuts down both charge and discharge MOSFETs. The discharging MOSFET turns on again till the temperature lower than V_{DOT} . The charge temperature protection status is released if either of the following conditions is satisfied. - (1) The temperature of battery pack recovers - (2) The VINI pin voltage is higher than V_{TH_DSG} In discharge state, once the battery temperature is beyond V_{DOT} , JW3311 shuts down both the charge and discharge MOSFETs. Till the temperature of battery pack recovers, the JW3311 turns on again the charge and discharge MOSFETs. #### **CTLD Pin and CTLC Pin** The CTLD/CTLC pins are used for cascaded operation. When any error is detected such as over-charge, over-discharge and temperature fault in the upper unit, the DO/CO pin signals are passed down to the CTLD/CTLC pins of the lower unit to control discharging/charging. The status of output pins in abnormalities state detected is shown below table. | V _{CTLC} / | V _{CTLD} (Input) | CO(Output) | DO(Output) | | |---------------------|---------------------------|------------|------------|--| | | VDD | Н | Н | | | V_{CTLC} | VDD-2 | L | Н | | | | Open | L | Н | | | | VDD | Н | Н | | | V_{CTLD} | VDD-2 | Н | L | | | | Open | Н | L | | #### **Discharge Disable Mode** The JW3311 provides discharge disable mode to independently control DO pin. When the DOCT pins of all the units are connected to their respective GND pins, JW3311 works normally. If any of the DOCT pins is connected to the VDD pin, the DO pin voltage of the corresponding unit is forced to be low level voltage and this signal is passed down via the CTLD pin. As a result, JW3311 enters to the discharge disable mode and the discharge MOSFET is forced off. During this mode, only charging is enabled. Then, by connecting all the DOCT pins back to the GND pins, JW3311 exits from this mode and meanwhile releases all the faults. Then JW3311 turns on both the charge/discharge MOSFETs for normal working. #### **Operation Modes** JW3311 has three power modes: Full Power mode, Sleep mode and Shutdown mode. For Full Power mode, JW3311 detects over-voltage, under-voltage, over-temperature and under-temperature events in every detection period. Besides, over-current events are checked continuously. These safety events decide the status of the charge and discharge MOSFETs. The max current consumption is $20\mu\text{A}$. JW3311 enters Sleep mode after entering over-discharge status, temperature fault status or open wire status. During the sleep mode, the max current consumption is as low as 13μ A. JW3311 enters Shutdown mode when VDD pin voltage becomes lower than V_{PDOWN} . During this mode, JW3311 does not check for any safety events. Both the charge and discharge MOSFET are off. The max current consumption is as low as 350nA. #### **Open Wire Detection** JW3311 integrates open wire detection and protection. The open wire detection period is t_{OPEN} . When any of VC7 to VC1 pin is open, it detects open wire and charge and discharge is prohibited after a delay time. The open wire protection is released when open wire point is connected again and the VM pin voltage is lower than V_{VMD} . ## **Charging Permission (CP) Protection** JW3311 provides charging permission function. If any battery cell voltage is lower than V_{CP} , JW3311 will enter to charge protection state. When JW3311 enters to the CP protection state, the CO pin becomes 0V, turning OFF the charge MOSFET ### Package and Bag Caution - JW3311-xxxx is Moisture-Sensitive Devices and its MSL⁵⁾ (Moisture-Sensitive Level) is level-3. - 2. Calculated shelf life in sealed bag is $\underline{12}$ months at <40 °C and <90%RH(Relative Humidity). - 3. Peak package body temperature⁵⁾ is 260 °C. - After bag is opened, devices that will be subjected to reflow solder or other high temperature process must - a) Mounted within <u>168 hours</u> of factory at the condition ≤30°C/60%RH. - b) Stored at <10%RH. - 5. Devices require bake before mounting if Humidity Indicator Car(HIC) is >10%RH when read at $23\pm5^{\circ}$ C. - 6. If baking is required, devices may be baked for 48 hours at 125 \pm 5 $^{\circ}$ C . If device containers cannot be subjected to high temperature for shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure. #### Note: Level and body temperature defined by IPC/JEDEC J-STD-020. # **REFERENCE DESIGN:** Single-stage operation (9cells) Single-stage operation (8cells) JW3311 Series Rev.0.72 # **PACKAGE OUTLINE** # **IMPORTANT NOTICE** Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. - Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden. - Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Copyright © 2018 JW3311 Incorporated. All rights are reserved by Joulwatt Technology Inc.